


Adegoke, C.W.; Chang, C.S. & Selig, E.T. (1979) Study of analytical models for track support systems; Transportation Research Record; n.º 733; p. 12-19;

AFNOR (2000) NF P 94-117-1: Module sous chargement statique à la plaque (EV2); Paris: Association Française de Normalisation;


Åhrén, T. (2008) Maintenance performance indicators (MPIs) for railway infrastructure; identification and analysis for improvement; PhD Thesis; Luleå, Sweden: Luleå University of Technology;

Aikawa, A. (2009) Techniques to Measure Effects of Passing Trains on Dynamic Pressure Applied to Sleeper Bottoms and Dynamic Behavior of Ballast Stones; Quarterly Report of RTRI; Vol. 50; n.º 2; p. 102-109;

Aikawa, A. (2013a) Determination of dynamic ballast characteristics under transient impact loading; Electronic Journal of Structural Engineering; Vol. 13; n.º 1; p. 17-34;

Aikawa, A. (2013b) Dynamic interaction within boundary layer between a sleeper and ballast based on field measurement; WCRR 2013 - World Congress on Railway Research; Sydney, Australia; 25-28 Nov. 2013;


Al-Qadi, I.; Xie, W. & Roberts, R. (2010a) Optimization of antenna configuration in multiple-frequency ground penetrating radar system for rail road substructure assessment; NDT&E International; Vol. 43; p. 20-28;


Alva-Hurtado, J.E. (1980) A methodology to predict the elastic and inelastic behavior of railroad ballast; Ph.D. Thesis; Amherst, Massachusetts: University of Massachusetts;
Alves Costa, P.; Calçada, R.; Silva Cardoso, A. & Bodare, A. (2010) Influence of soil non-linearity on the dynamic response of high-speed railway tracks; Soil Dynamics and Earthquake Engineering; Vol. 30; n.º 4; p. 221-235;
Anderson, M. (2002) Strategic planning of track maintenance - State of the Art; Linköping, Sweden: Swedish National Road and Transport Research Institute (VTI);
Anderson, P.; Cunningham, C.J. & Barry, D.A. (2002) Efficiency and potential environmental impacts of different cleaning agents used on contaminated railway ballast; Land Contamination & Reclamation; Vol. 10; n.º 2; p. 71-77;

Andrews, J.; Prescott, D. & Rozière, F.D. (2014) A stochastic model for railway track asset management; Elsevier; Vol. Reliability Engineering and System Safety; n.º 130; p. 76-84;


Arévalo, F. & Atienza, J. (2012) Costes de las líneas de alta velocidad internalizados en la contabilidad del administrador de infraestructuras; 360grados revista de altaVelocidad; Vol. 2; p. 5-22;

Asanuma, K. (2004) Ladder Track Structure and Performance; RTRI - Railway Technology Avalanche; Vol. 6; n.º Sep. 1;


Asmussen, B.; Behr, W.; Degen, K.G. & Schulte-Werning, B. (2011) Recent Developments in Noise Abatement at Rolling Stock and Track to support the Noise Reduction Strategy of Deutsche Bahn; WCRR 2011 - World Congress on Railway Research; Lille, France; 22-26 May. 2011;


ATSB (2014) Derailment of train 7SP5 between Caragabal and Wirrinya NSW; Canberra: Australian Transport Safety Bureau; Transport safety report;


Auer, F.; Potvin, R.; Godart, P. & Schmitt, L. (2013) Under Sleeper Pads in Track – the UIC project; European Railway Review; Vol. 19; n.º 2; p. 2-8;


Aursudkij, B. (2007) A Laboratory study of railway ballast behavior under traffic loading and tamping maintenance; Ph.D. Thesis; Nottingham, UK: University of Nottingham;

Aursudkij, B.; McDowell, G.R. & Collop, A.C. (2009) Cyclic loading of railway ballast under triaxial conditions and in a railway test facility; Granular Matter; Vol. 11; n.º 6; p. 391-401;

Ayres, D.J. (1986) Geotextiles or Geomembranes in Track? British Railways' Experience; Geotextiles and Geomembranes; Vol. 3; p. 129-142;


Bathurst, R.J. & Raymond, G.P. (1987) Geogrid reinforcement of ballasted track; Transportation Research Record; n.º 1153; p. 8-14;


Bodin-Bourgoin, V.; Tamagny, P.; Sab, K. & Gautier, P.-É. (2006) Détermination expérimentale d’une loi de tassement du ballast des voies ferrées soumises à un chargement latéral; Canadian Geotechnical Journal; Vol. 43; p. 1028-1041;


Boler, H.; Qian, Y. & Tutumluer, E. (2014) Statistical analyses of railroad ballast aggregate packing influenced by changes in gradation and particle shape properties; Transportation Research Board 93rd Annual Meeting; Washington, DC; 12-16 Jan.;

Boler, H.; Wnek, M. & Tutumluer, E. (2012) Establishing linkages between ballast degradation and imaging based aggregate particle shape, texture and angularity indices; Advances in Transportation Geotechnics II - Proceedings of the 2nd International Conference on Transportation Geotechnics; Hokkaido University, Japan; 10-12 Sep.; pp. 186-191;


Brandl, H. (2004b) Innovative methods and technologies in earthworks; Proceedings of the International Seminar on Geotechnics in Pavement and Railway Design and Construction; Athens; 16-17 Dec.; pp. 3-34;


Briaud, J.L.; James, R.W. & Hoffman, S.B. (1997) NCHRP synthesis 234: Settlement of Bridge Approaches (the bump at the end of the bridge); Washington, D.C.: Transportation Research Board;


Chen, C.; McDowell, G.R. & Thom, N.H. (2012a) Discrete element modelling of cyclic loads of geogrid-reinforced ballast under confined and unconfined conditions; Geotextiles and Geomembranes; Vol. 35; p. 76-86;


Cheng, Y.P.; Bolton, M.D. & Nakata, Y. (2004) Crushing and plastic deformation of soils simulated using DEM Geotechnique; Vol. 54; n.º 7; p. 131-141;


Chiang, C.C. (1989) Effects of Water and Fines on Ballast Performance in Box Tests; M.Sc. Thesis; Amherst, Massachusetts; University of Massachusetts;


Clayton, C.R.I. (2011) Stiffness at small strain: research and practice; Geotechnique; Vol. 61; n.º 1; p. 5-37;


Coleman, D. (1985) *Synthesis of railroad design methods, track response models, and evaluation methods for military railroads*; Vicksburg, MS: US Army Engineer Waterways Experiment Station, Geotechnical Laboratory;


Couto, A. & Graham, D.J. (2009) *The determinants of efficiency and productivity in European railways*; Applied Economics; Vol. 41; n.º 22; p. 2827-2851;


Cui, Y.J.; Duong, T.V.; Tang, A.M.; Dupla, J.-C.; Calon, N. & Robinet, A. (2013) *Investigation of the hydro-mechanical behaviour of fouled ballast*; Journal of Zhejiang University SCIENCE A; Vol. 14; n.º 4; p. 244-2455;


Cundall, P.A. & Strack, O.D.L. (1979) *A discrete numerical model for granular assemblies*; Geotechnique; Vol. 29; n.º 1; p. 47-65;


217
De Chiara, F.; Fontul, S. & Fortunato, E. (2014) GPR Laboratory Tests For Railways Materials; Dielectric Properties Assessment; Remote Sensing; Vol. 6; n.º 10; p. 9712-9728;


Dethy, B. & Verhelst, F. (2003) Soil improvement for the construction of the platform for Belgian High Speed Train in urban areas; IABSE Symposium, Structures for High-Speed Railway Transportation; Antwerp; Vol. 7; pp. 66-72;


Dobruszkes, F. (2011) High-speed rail and air transport competition in Western Europe: A supply-oriented perspective; Transport Policy; Vol. 18; p. 870-879;


Ebersöhn, W. & Selig, E.T. (1994) Track modulus measurements on a heavy haul line; Transportation Research Record: Journal of the Transportation Research Board; Vol. 1470; p. 73-82;


ERRI (1970) D71/R10: Stresses in the rails, the ballast and in the formation resulting from traffic loads - Deformation properties of ballast (Laboratory and track tests); Utrecht: European Rail Research Institute - Office de Recherches et d’Essais de l'Union Internationale des Chemins de Fer;


ERRI (1999a) Bridge Ends - Embankment Structure Transition, State of Art Report, D230.1 Committee; Utrecht: European Rail Research Institute; Report 3;

ERRI (1999b) D214: Ponts rails pour vitesses sur 200km/h. Rapport final (Rail Bridges for Speeds > 200 km/h. Final Report); Utrecht: European Rail Research Institute; Report 9;


Esveld, C. (1980) Track stiffness measurements using an adapted tamping machine; Rail International; Vol. 11; n.º 2; p. 103-113;


Fatahi, B.; Khabbaz, H. & Le, T.M. (2012) Improvement of rail track subgrade using stone columns combined with geosynthetics; Advances in Transportation Geotechnics II - Proceedings of the 2nd International Conference on Transportation Geotechnics; Hokkaido University, Japan; 10-12 Sep.; pp. 202-206;


Fernandes, V.A.; Costa D’Aguiar, S. & Lopez-Caballero, F. (2011) Simulation of the Impact of Mechanical Property Variability on Railway Behaviour subject to Static Loading; Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing; Chania, Crete, Greece; 6-9 September 2011;


Ferreira, T.M. & Teixeira, P. (2011) Impact of different drainage solutions in the behavior of railway trackbed layers due to atmospheric actions; WCRR 2011 - World Congress on Railway Research; Lille, France; 22-26 May. 2011;

Flyvbjerg, B. (2006) From Nobel Prize to Project Management: Getting Risks Right; Project Management Journal; Vol. 37; n.° 3; p. 5-15;
Foeillet, G.; Coudert, F. & Delcourt, V. (2008) IRIS 320 is a global concept inspection vehicle, merging engineering and R&D tools for infrastructure maintenance; WCRR 2008 - World Congress on Railway Research; Seoul, Korea; 18-22 May 2008;
Fortunato, E. (2003) Caracterização de camadas de agregados não ligados em subestruturas de vias de comunicação; Seminário sobre Agregados; Lisboa; 31 de Março de 2003.;
Fortunato, E. & Alves, E. (2013) Avaliação da plataforma ferroviária da Linha de Sena entre Dona Ana e Necungas; Lisboa: LNEC; R273/2013 - NIT/DT (Confidencial);


Freudenstein, S. (2006) Innovation Demands Experience In Application; Track for High-Speed Railways; Porto, Portugal; 12-13 Oct.;


Furuya, A. & Madanat, S. (2013) Accounting for Network Effects in Railway Asset Management; Journal of Transportation Engineering; Vol. 139; n.º 1; p. 92-100;


Ghataora, G.S. & Rushton, K. (2012) Movement of water through ballast and subballast for dual-line railway track; Transportation Research Record: Journal of the Transportation Research Board; Vol. Railways 2012; n.º 2289; p. 78-86;

Giannakos, K. (2010a) Influence of Rail Pad Stiffness on Track Stressing, Life-Cycle and Noise Emission; International conference on sustainable construction materials and technologies; Ancona, Italy; Jun 28-30;


Gidel, G.; Hornych, P.; Chauvin, J.-J.; Breyssse, D. & Denis, A. (2001) Nouvelle approche pour l’étude des déformations permanentes des graves non traitées à l’appareil triaxial à chargements répétés; Bulletin des Laboratoires des Ponts et Chaussées; n.º 233; p. 5-21;


Guidat, A. (2006) The necessity of rail maintenance and track design considerations; Rail Engineering International; Vol. 1; p. 4-10;


Haddani, Y.; Saussine, G. & Gourvès, R. (2013) Field ballast granulometry assessment thanks to image analysis; Ballast: Issues & Challenges; Paris, France; 5-6 Dez. 2013;

Hadiashar, A.B. (2013) General assessment of the impact of vibration induced by the Esfahan MRT system on historic buildings; 12th International Conference on Railway Engineering; London; 10-11 Jul.;


Hall, L. (2003) Simulations and analyses of train-induced ground vibrations in finite element models; Soil Dynamics and Earthquake Engineering; Vol. 23; n.º 0; p. 403-413;

Han, X. & Selig, E.T. (1997) Effects of Fouling on Ballast Settlement; Proc. 6th International Heavy Haul Railway Conference; Cape Town, South Africa; 6-10 Apr.; Vol. 1; pp. 257-268;


Haraldsson, H. (1984) Relation between petrography and the aggregate properties of Icelandic rocks; Bulletin of the International Association of Engineering Geology; Vol. 30; n.º 1; p. 73-76;


Harrod, S. (2009) Capacity factors of a mixed speed railway network; Transportation Research Part E; Vol. 45; p. 830-841;
Heide, W.L. (1993) Investigation into potential chemical weathering of railroad ballast; AREA Bulletin; Vol. 93; n.º 736; p. 229-243;
Hesse, D.E.; Tinjum, J.M. & Warren, B.J. (2014) Impact of increasing freight loads on rail substructure from fracking sand transport; Transportation Geotechnics; Vol. 1; n.º 10; p. 241-256;
Hildebrand, R. (2004) Effect of soil stabilization on audible band railway ground vibration; Soil Dynamics and Earthquake Engineering; Vol. 24; p. 411-424;
Horniček, L. (2011) Long-term monitoring of antivibration mats from rubber recyclate; 11th International Conference on Railway Engineering; London; 29-30 Jun.;
Hossain, Z.; Indraratna, B.; Darve, F. & Thakur, P.K. (2007) DEM analysis of angular ballast breakage under cyclic loading; Geomechanics and Geoengineering: An International Journal; Vol. 2; n.º 6; p. 175-181;
Hosseingholian, M.; Fromentin, M. & Robinet, A. (2011a) Dynamic Track Modulus from Measurement of Track Acceleration by Portancemetre; WCRR 2011 - World Congress on Railway Research; Lille, France; 22-26 May. 2011;
Huang, H. & Tutumluer, E. (2011) Discrete Element Modeling for fouled railroad ballast; Construction and Building Materials; Vol. 25; n.º 8; p. 3306-3312;
Huang, H.; Tutumluer, E. & Dommbrow, W. (2009a) Laboratory Characterization of Fouled Railroad Ballast Behavior; Transportation Research Record; n.º 2117; p. 93-101;
Huang, H.; Tutumluer, E.; Hashash, Y.M.A. & Ghaboussi, J. (2009b) Discrete element modeling of aggregate behavior in fouled railroad ballast; Recent advancement in soil behavior, in situ test methods, pile foundations, and tunneling; Los Angeles, CA, USA; Vol. Geotechnical Special Publication 192;
Hudec, P.P. (1983) Aggregate tests - their relationship and significance; Durability of building materials; Vol. 1; n.º 3; p. 275-300
Hyslip, J.P. (2002) Fractal analysis of track geometry data; Transportation Research Record: Journal of the Transportation Research Board; Vol. 1785; p. 50-57;
Indraratna, B.; Lackenby, J. & Christie, D. (2005) Effect of confining pressure on the degradation of ballast under cyclic loading; Geotechnique; Vol. 55; n.º 4; p. 325-328;
Indraratna, B.; Ngo, N.T. & Rujikiatkamjorn, C. (2011) Behavior of geogrid-reinforced ballast under various levels of fouling; Geotextiles and Geomembranes; Vol. 29; p. 313-322;


Indraratna, B.; Nimbalkar, S.; Coop, M. & Sloan, S.W. (2014b) A constitutive model for coal-fouled ballast capturing the effects of particle degradation; Computers and Geotechnics; Vol. 61; n.º 0; p. 96-107;

Indraratna, B.; Nimbalkar, S. & Rujikiatkamjorn, C. (2014c) From theory to practice in track geomechanics – Australian perspective for synthetic inclusions; Transportation Geotechnics; Vol. 1; n.º 10; p. 171-187;


Indraratna, B.; Sun, Q.D. & Nimbalkara, S. (2015) Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage; Canadian Geotechnical Journal; Vol. 52; n.º 1; p. 73-86;


Indraratna, B.; Thakur, P.K. & Vinod, J.S. (2010b) Experimental and numerical study of railway ballast behavior under cyclic loading; International Journal of Geomechanics; Vol. 10; n.º 4; p. 136-144;

INNOTRACK (2006a) Guideline for subgrade reinforcement with geosynthetics; INNOTRACK - Innovative Track Systems; Paris: INNOTRACK Consortium; D2.2.6;

INNOTRACK (2006b) Guidelines for LCC and RAMS analysis; INNOTRACK - Innovative Track Systems; Paris: INNOTRACK Consortium; Report D6.5.4;

INNOTRACK (2008a) Benchmark of LCC tools; INNOTRACK - Innovative Track Systems; Paris: INNOTRACK Consortium; Report D2.2.8;

INNOTRACK (2008b) First phase report on the modelling of poor quality sites; INNOTRACK - Innovative Track Systems; Paris: INNOTRACK Consortium; D2.1.3;

INNOTRACK (2008c) Guideline for subgrade reinforcement with columns; INNOTRACK - Innovative Track Systems; Paris: INNOTRACK Consortium; D2.2.8;

INNOTRACK (2008d) Methods of track stiffness measurements; INNOTRACK - Innovative Track Systems; Paris: INNOTRACK Consortium; D2.1.11;

INNOTRACK (2008e) Rail Inspection Technologies; INNOTRACK - Innovative Track Systems; Paris: INNOTRACK Consortium; D4.4.1;

INNOTRACK (2008f) State of the art report on soil improvement methods and experience; INNOTRACK - Innovative Track Systems; Paris: INNOTRACK Consortium; D2.2.1;

INNOTRACK (2009) Subgrade reinforcement with columns; INNOTRACK - Innovative Track Systems; Paris: INNOTRACK Consortium; D2.2.5;

Ishikawa, T.; Miura, S. & Sekine, E. (2014) Simple plastic deformation analysis of ballasted track under repeated moving-wheel loads by cumulative damage model; Transportation Geotechnics; Vol. 1; n.º 10; p. 157-170;
Ishikawa, T.; Sekine, E. & Miura, S. (2011) Cyclic deformation of granular material subjected to moving-wheel loads; Canadian Geotechnical Journal; Vol. 48; p. 691-703;
Jeffs, T. & Marich, S. (1987) Ballast characteristics in the laboratory; Conference on Railway Engineering; Perth, Australia; 14-16 Sep.; pp. 141-147;
Ju, S.H.; Liao, J.R. & Ye, Y.L. (2010) Behavior of ground vibrations induced by trains moving on embankments with rail roughness; Soil Dynamics and Earthquake Engineering; Vol. 30; n.º 11; p. 1237-1249;


Kaewunruen, S. & Remennikov, A.M. (2007a) Field trials for dynamic characteristics of railway track and its components using impact excitation technique; NDT & E International; Vol. 40; n.º 7; p. 510-519;


Kaewunruen, S. & Remennikov, A.M. (2009) State dependent properties of rail pads; Transport Engineering in Australia; Vol. 12; n.º 1; p. 17-24;


Kalliainen, A. & Kolisoja, P. (2011) Modeling of the effect of embankment dimensions on the mechanical behavior of railway track – model scale instrumented test embankments; WCRR 2011 - World Congress on Railway Research; Lille, France; 22-26 May. 2011;


Kanazawa, H. & Tarumi, H. (2010) Technical transition of earth structures for shinkansen; Soils and foundations; Vol. 50; n.º 6; p. 817-828;


Karlström, A. & Boström, A. (2007) Efficiency of trenches along railways for trains moving at sub-or supersonic speeds; Soil Dynamics and Earthquake Engineering; Vol. 27; p. 625-641;


Kerr, A. (1983) A method for determining the track modulus using a locomotive or car on multi-axle trucks; AREA Bulletin; Vol. 84; n.º 692; p. 269-286;


Kishino, Y. (1989) Computer Analysis of Dissipation Mechanism in Granular Media; Powders and Grains; Clermont-Ferrand, France; 4-8 Sep.; pp. 323–330;

Klassen, M.; Clifton, A. & Watters, B. (1987) Evaluation and Ballast Performance Specifications; Transportation Research Record, Performance of Aggregates in Railroads and Other Track Performance; Vol. 1131; p. 35-44;


Koller, G. (2013b) Noise reduction with rail shielding - field tests on german railway track; 12th International Conference on Railway Engineering; London; 10-11 Jul.;

Kono, A. & Matsushima, T. (2011) 3D-DEM simulation about dynamic behaviors of ballasted track under impact loading; 11th International Conference on Railway Engineering; London; 29-30 Jun.;


Kouroussis, G.; Connolly, D. & Verlinden, O. (2014) Railway-induced ground vibrations - a review of vehicle effects; International Journal of Rail Transportation; Vol. 2; n.º 2; p. 69-110;


Kouroussis, G.; Connolly, D. & Verlinden, O. (2014) Railway-induced ground vibrations - a review of vehicle effects; International Journal of Rail Transportation; Vol. 2; n.º 2; p. 69-110;

Krale, U. & Brunner, P.H. (2011) Sustainable management of railway infrastructure – a case study in analyzing the fate of copper along railway tracks; WCRR 2011 - World Congress on Railway Research; Lille, France; 22-26 May. 2011;


Kufver, B. (2006) Criteria in the alignment design of high speed railways; Track for High-Speed Railways; Porto, Portugal; 12-13 Oct.;


Kumara, J. & Hayano, K. (2013) Model tests on settlement behaviour of ballasts subjected to sand intrusion and tie tamping application; 18th International Conference on Soil Mechanics and Geotechnical Engineering; Paris, France; 2-6 Sep.; pp. 1305-1308;


Lackenby, J. (2006) Triaxial behaviour of ballast and the role of confining pressure under cyclic loading; Ph.D. Thesis; Wollongong, Australia: University of Wollongong;


Lam, H.F.; Hu, Q. & Wong, M.T. (2014) The Bayesian methodology for the detection of railway ballast damage under a concrete sleeper; Engineering Structures; Vol. 81; p. 289-301;
Lane, J. & Dora, J. (2011) Tomorrow’s Railway and Climate Change Adaptation (TRaCCA); WCRR 2011 - World Congress on Railway Research; Lille, France; 22-26 May. 2011;
Lane, J.S. & Thompson, K. (2011) Risk-based design of structures for impact from railway vehicles; 11th International Conference on Railway Engineering; London; 29-30 Jun.;
Le Pen, L. (2008) Track behaviour: the importance of the sleeper to ballast interface; PhD Thesis; Southampton, UK: University of Southampton;
Lechner, B. (2005) Ballastless tracks on asphalt pavements - design and experiences in Germany; 7th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRA 2005); Trondheim, Norway; 27-29 Jun 2005;
Lee, K.L. & Farhoomand, I. (1967) Compressibility and crushing of granular soil in anisotropic triaxial compression; Canadian Journal of Civil Engineering; Vol. 4; n.º 1; p. 68-86;
Lei, X. & Mao, L. (2004) Dynamic response analyses of vehicle and track coupled system on track transition of conventional high speed railway; Journal of Sound and Vibration; Vol. 271; n.º 3-5; p. 1133-1146;

Li, D. (1994) Railway track granular layer thickness design based on subgrade performance under repeated loading; Ph.D. Thesis; Amherst, Massachusetts: University of Massachusetts;


Li, D. & Selig, E.T. (1995) Evaluation and remediation of potential railway subgrade problems under repeated heavy axle loads; Chicago: Association of American Railroads, Transportation Technology Center; R-898;


Lim, W.L. & McDowell, G.R. (2005) Discrete element modelling of railway ballast; Granular Matter; Vol. 7; n.º 1; p. 19-29;


Liu, S.H. (2006) Simulating a direct shear box test by DEM; Canadian Geotechnical Journal; Vol. 43; p. 155-168;
Luomala, H. & Nurmikolu, A. (2012) Railway Track Stiffness Measurements at Bridge Transition Zones; Advances in Transportation Geotechnics II - Proceedings of the 2nd International Conference on Transportation Geotechnics; Hokkaido University, Japan; 10-12 Sep.; pp. 811-816;
Marchi, D.; Chan, C.; Seed, B. & Duncan, J. (1969) Strength and deformation characteristics of rockfill material; University of California, Berkeley; Report no TE-69-5;
Marsal, R.J. (1967) Large scale testing of rockfill materials; Journal of the Soil Mechanics and Foundations Division, ASCE; Vol. 93; n.º SM2; p. 27-43;
Melis Maynar, M. (2006b) Terraplenes y balasto en Alta Velocidad Ferroviaria; Segunda parte: Los trazados de Alta Velocidad en otros países; Revista de Obras Públicas; Vol. Jun. 2006; n.º 3468; p. 7-26;


Mishra, D.; Qian, Y.; Huang, H. & Tutumluer, E. (2014a) An integrated approach to dynamic analysis of railroad track transitions behavior; Transportation Geotechnics; Vol. 1; p. 188-200;


Moravčík, M. (2004) Vertical track stiffness effect on dynamic behaviour of track structure; Komunikácie; Vol. 6; n.º 3; p. 10-16;


Research, Development and Maintenance - Railways 2014; Ajaccio, Corsica, France; 8-11 April 2014;


Nálsund, R. (2014) Railway Ballast Characteristics, Selection Criteria and Performance; PhD Thesis; Trondheim, Norway; Norwegian University of Science and Technology;


Network Rail (2005a) Inspection and maintenance of permanent way. NR/SP/TRK/001. 2005; Network Rail;

Network Rail (2005b) Network Rail, Company Code of Practice, Formation Treatments NR/SB/TRK/9039;


Nguyen, K.; Goicoeia, J.M. & Galbadón, F. (2014) Comparison of dynamic effects of high-speed traffic load on ballasted track using a simplified two-dimensional and full three-dimensional model; Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit; Vol. 228; n.º 2; p. 128-142;


Nicks, J.E. (2009) *The Bump at the End of the Railway Bridge*; Ph.D. Thesis; College Station, Texas: Texas A&M University;

Nielsen, J.; Mirza, A.; Ruest, P.; Huber, P.; Cervello, S.; Müller, R. & Nelain, B. (2013) *Guideline for Design of Vehicles Generating Reduced Ground Vibration*; RIVAS - Railway Induced Vibration Abatement Solutions Collaborative Project; RIVAS Consortium; WP5 D5.5;


Nordal, R.S. (2005) *Laboratory and field testings of the new concrete friction sleeper*; 7th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRA 2005); Trondheim, Norway; 27-29 Jun 2005;


Ortega, R.S.; Markine, V.L. & Dell’Olio, L. (2011) Improving Track Transitions of High-Speed Lines; Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing; Chania, Crete, Greece; 6-9 September 2011;


Paderno, C. (2011) Improving ballast tamping process; WCRR 2011 - World Congress on Railway Research; Lille, France; 22-26 May. 2011;


Paixão, A.; Alves Ribeiro, C.; Pinto, N.M.P.; Fortunato, E. & Calçada, R. (2015a) On the use of under sleeper pads on transition zones at railway underpasses: experimental field testing; Structure and Infrastructure Engineering; Vol. 11; n° 2; p. 112-128;


Powrie, W. & Priest, J. (2011) Behaviour of ballasted track during high speed train passage; Southampton, UK: High Speed Track, Railways Day; 15 Feb.;
Qian, Y.; Boler, H.; Moaveni, M.; Tutumluer, E.; Hashash, Y. & Ghaboussi, J. (2014) Characterizing ballast degradation through Los Angeles abrasion test and image analysis; Transportation Research Board 93rd Annual Meeting; Washington, DC; 12-16 Jan.;
Qian, Y.; Mishra, D.; Tutumluer, E. & Kazmee, H.A. (2015) Characterization of geogrid reinforced ballast behavior at different levels of degradation through triaxial shear strength test and discrete element modeling; Geotextiles and Geomembranes;
Queiroz, R.C. (2006) Longitudinal track-ballast resistance of railroad tracks considering four diferente types of sleepers; WCRR 2006 - World Congress on Railway Research; Montréal, Canada; 04-08 Jun. 2006; p. 6;
Raymond, C.P. (1985) Research on railroad ballast specification and evaluation; Transportation Research Record; n.º 1006; p. 1-8;
Raymond, C.P. (2000) Track and support rehabilitation for a mine company railroad; Canadian Geotechnical Journal; Vol. 37; p. 318-332;
Raymond, C.P. (2002) Reinforced ballast behaviour subjected to repeated load; Geotextiles and Geomembranes; Vol. 20; n.º 1; p. 39-61;
Raymond, C.P. & Bathurst, R. (1994) Repeated Load Response of Aggregates in Relation to Track Quality Index; Canadian Geotechnical Journal; Vol. 31; n.º 4; p. 547-554;
Raymond, G.P.; Lake, R.W. & Boon, C.J. (1976) Stresses and deformations in railway track; Ontario, Canada: Queen’s University at Kingston; 76-11;
REREFER (2007) IT.GEO.006 - Características técnicas do sub-balaastro; Lisboa: Rede Ferroviária Nacional, EPE;
REREFER (2008) IT.GEO.001 - Fornecimento de Balastro e Gravilha; Lisboa: Rede Ferroviária Nacional, EPE;
Remennikov, A.M. & Kaewunruen, S. (2005) Investigation of vibration characteristics of prestressed concrete sleepers in free-free and in-situ conditions; Australian Structural Engineering Conference 2005 (ASEC 2005); Newcastle, Australia; 11-14 September, 2005;


Riessberger, K. (2008b) Cost-governed track innovations; World Congress on Railway Research 2008; Seoul, South Korea; 18-22 May; pp. 53-56;


Riessberger, S. (2006) Ballast tracks for high speeds; Track for High-Speed Railways; Porto, Portugal; Out, 2006;


Robinet, A. (2014a) Design of the asphalt layer on high speed lines; Transportation Research Board 93rd Annual Meeting; Washington, DC; 12-16 Jan.;

Robinet, A. (2014b) Track Bed Investigations and Repairs in the French Railways; Transportation Research Board 93rd Annual Meeting; Washington, DC; 12-16 Jan.;


Roque, A.J.; Fortunato, E. & Silva, P. (2009) Valorização dos resíduos de pneus usados em obras geotécnicas; Seminário - Valorização de Resíduos em Obras Geotécnicas; Universidade de Aveiro; 28-29 Set.;


SMARTRAIL (2014) User Guidelines: Implementation of geosynthetics for rehabilitation of old ballasted railway tracks; SMARTRAIL - Smart maintenance analysis and remediation of transport infrastructure; Dublin: The SMARTRAIL Consortium;


Smith, R. (2001) Railway Technology – The Last 50 Years and Future Prospects; Japan Railway & Transport Review; Vol. 27; p. 16-24;

Smith, R. & Peck, R.B. (1955) Stabilization by pressure grouting on American railroads; Geotechnique; Vol. 5; n.º 3; p. 243-252;


SNCF (2005) Full-scale tests on the projection of ballast on high-speed lines; Rail & Recherche; Vol. 42; n.º Jan/Feb/Mar;


Steffens, D.M. (2005) Identification and development of a model of railway track dynamic behaviour; MSc Thesis; Brisbane, Australia: Queensland University of Technology;


Stenström, C.; Parida, A.; Lundberg, J. & Kumar, U. (2015) Development of an integrity index for benchmarking and monitoring rail infrastructure: application of composite indicators; International Journal of Rail Transportation; Vol. 3; n.º 2; p. 61-80;

Su, L.; Indraratna, B.; Rujikiatkamjorn, C. & Christie, D. (2011) Laboratory and field testing study on non-destructive assessment of ballast conditions using ground penetrating radar; WCRR 2011 - World Congress on Railway Research; Lille, France; 22-26 May. 2011;


Suh, H.; Han, S.; Yun, T. & Kim, K. (2014) Evaluation of shape parameters for rock fragments by 3D X-ray computed tomography and image processing; 8th Asian Rock Mechanics Symposium - ARMS8; Sapporo, Japan; 14-16 October 2014;


Sun, Q.D.; Indraratna, B. & Nimbalkar, S. (2014) Effect of cyclic loading frequency on the permanent deformation and degradation of railway ballast; Geotechnique; Vol. 64; n.º 9; p. 746-751;


Sussmann, T.R. (1999) Application of ground penetrating radar to railway track substructure maintenance management; Ph.D. Thesis; Amherst, Massachusetts: University of Massachusetts;


Teixeira, P. (2003) Contribuição a la reducción de los costes de mantenimiento de vias de alta velocidad mediante la optimización de su rigidez vertical; Ph.D Thesis; Barcelona: Universitat Politècnica de Catalunya;


Terno, H.-J. (2011) State of the art review of mitigation measures on track, RIVAS - Railway Induced Vibration Abatement Solutions; Paris: RIVAS Consortium; WP3 D3.1;


Thom, N.H. & Brown, S.F. (1989) The mechanical properties of unbound aggregates from various sources; Proceedings of the Third International Conference on Unbound Aggregates in Roads; Nottingham, UK.; 11-13 Apr.; pp. 130-142;


Thompson, D. (2012) Track21: reducing noise and vibration from ballasted track; European Railway Review; Vol. 18 - Noise & Vibrations Supplement; n.º 6; p. 3-8;


Tutumluer, E.; Dombrow, W. & Huang, H. (2008) Laboratory Characterization of Coal Dust Fouled Ballast Behavior; In: AREMA Conference; Salt Lake City, Utah; September 21-23;

Tutumluer, E.; Garg, N. & Thompson, M.R. (1998) Granular material radial deformation measurements with a circumferential extensometer in repeated load triaxial testing;


Var, J. (2002) A Life Cycle Cost model for prioritisation of track maintenance and renewal; ProM@in - Progress in Maintenance and Management of Railway Infrastructure; Vol. Innovations for a cost effective RailwayTrack; n.º 2; p. 21-25;

Vatn, J. & Aven, T. (2010) An approach to maintenance optimization where safety issues are important; Reliability Engineering and System Safety; p. 58-63;


Veit, P. & Wogowitsch, M. (2002) Track Maintenance based on life-cycle cost calculations; ProM@in - Progress in Maintenance and Management of Railway Infrastructure; Vol. Innovations for a cost effective RailwayTrack; n.º 2; p. 6-13;


Vorster, D.J. (2012) The use of ground penetrating radar for track substructure characterization; MSc Thesis; Pretoria, South Africa: University of Pretoria;

Vorster, J. & Gräbe, H. (2010) Axle load and track deflection on a heavy haul line; Civil Engineering; Vol. 18; n.º 4; p. 44-49;


Werkmeister, S.; Dawson, A. & Wellner, F. (2001) Permanent Deformation Behavior of Granular Materials and the Shakedown Concept; Transportation Research Record; n.º 1757; p. 75-81;


Wright, S.B. (1983) Damage caused to ballast by mechanical maintenance techniques; London: British Rail Research; TM-TD-015;


Wu, T.X. & Thompson, D.J. (1999) Effects of local preload on the foundation stiffness and vertical vibration of railway track; Journal of Sound and Vibration; Vol. 219; n.º 5; p. 881-904;

Wu, T.X. & Thompson, D.J. (2004) The effects on railway rolling noise of wave reflections in the rail and support stiffening due to the presence of multiple wheels; Applied Acoustics; Vol. 62; p. 1249-1266;


Yang, H. & Zhang, A. (2012) Effects of high-speed rail and air transport competition on prices, profits and welfare; Transportation Research Part B: Methodological; Vol. 46; n.º 10; p. 1322-1333;

Yang, L. & Thompson, D.J. (2011) Time-domain prediction of impact noise from wheel flats based on measured profiles; Journal of Sound and Vibration; Vol. 333; p. 3981-3996;


Yoon, H.-J.; Song, K.-Y.; Kim, J.-S. & Kim, D.-S. (2011) Longitudinal strain monitoring of rail using a distributed fiber sensor based on Brillouin optical correlation domain analysis; NDT&E International; Vol. 44; p. 637–644;


Zakeri, J.-A. & Abbasi, R. (2011) Field investigation on distribution of contact pressure between sleeper and saturated ballast with flowing sand; 11th International Conference on Railway Engineering; London; 29-30 Jun.;


Zoeteman, A. (2001) *Life cycle cost analysis for managing rail infrastructure*; European Journal of Transport and Infrastructure Research; Vol. 1; n.º 4; p. 391-413;